Hydrology Days 2013

Interpreting watershed scale hydrological alterations from widespread mountain pine beetle infestation using stable isotopes

Lindsay A. Bearup¹, Reed M. Maxwell¹, David W. Clow², John E. McCray¹ and Jonathan O. Sharp¹
Civil and Environmental Engineering Department, Colorado School of Mines, Golden, CO

Abstract. A recent infestation of the mountain pine beetle (MPB) in the Rocky Mountain West has resulted in unprecedented land cover change. While deforestation is known to affect tree-scale hydrologic processes by increasing water and energy transmission to the forest floor and decreasing transpiration, increases in peak flow timing and water yield at the watershed scale are less predictable as these perturbations combine non-uniformly across larger scales. Tree-scale alterations also have the potential to change the partitioning of water, with implications for biogeochemistry and transport. In this study, stable isotope (δ¹⁸O and δD) datasets from four watersheds in Rocky Mountain National Park are compared to investigate MPB influence on water partitioning. In addition, spectral techniques are used to estimate residence times and trends in surface water isotopic compositions. Preliminary δ¹⁸O analyses from the summer of 2012 found offsets between the peak δ¹⁸O signal of precipitation, shallow well water, and streamwater, suggesting differences in groundwater residence times and potentially water sources between streamwater and shallow groundwater.

¹ Hydrologic Science and Engineering Program, Civil and Environmental Engineering Department, Colorado School of Mines, 1500 Illinois St, Golden CO 80401
Telephone: 717-951-5246 Email: lbearup@mines.edu
² Colorado Water Science Center, U.S. Geological Survey, Denver Federal Center, MS-415, Building 53, Lakewood, CO 80225